IEA Technology Collaboration Programme on District Heating & Cooling Business models - the international perspective Robin Wiltshire UK Representative & Chair IEA-DHC **UK District Energy Vanguards, 24 January 2018** ## What is the IEA District Heating & Cooling TCP (IEA-DHC)? - IEA-DHC is a global research programme, established in 1983 - Research topics cover all aspects of DHC technology focusing on reducing cost and improving performance - Reports are produced for all projects and are available at the website: <u>www.iea-dhc.org</u> - Current members of IEA-DHC are: Austria, Canada, Denmark, Finland, France, Germany, Korea, Norway, Sweden, UK, USA - Potential new members: China, Belgium. ## Annex XI (2014 - 2017) Projects - Transformation roadmap from high to low temperature district heating systems - Plan 4DE: Reducing greenhouse gas emissions and energy consumption by optimising urban form for district energy - Smart use as the missing link in district energy development - Structured for success: governance models and strategic decision making processes for deploying thermal grids - Future low temperature district heating design guidebook. - All project reports now available at www.iea-dhc.org ## Transformation roadmap from high to low temperature district heating system - Case for reducing return temperatures incontrovertible. - Even in Sweden: current average return temperature 47°C; potential optimised return temperature 32°C. - Case for reducing supply temperatures when serving older existing buildings more contentious. - So: reduce return temperature first; reduce supply temperature if/when appropriate. ## Plan4DE: Reducing greenhouse gas emissions and energy consumption by optimising urban form for district energy - Planning tool to help planners to consider the impacts of land-use plans on the feasibility of district energy. - It calculates total heat demands and densities, and corresponding DH system costs. - This enables planners to very quickly determine the implications of any built form for DH potential, and understand the impact of changing building or district densities. # Structured for success: Governance models and strategic decision making processes for deploying thermal grids - A major barrier to DH system deployment remains complexity around identifying appropriate governance models. - This project reviews a range of governance models and strategic decision making processes that have led to successful, financially viable district energy systems - This research provides critical information and case study examples to align the governance and business models with their district energy project goals and objectives. ## Critical Steps for Choosing Business Models #### **Objectives** Identify them & prioritise #### Risk Affects developers, investors/ lenders Mitigation > Identify, understand and allocate to the right party #### Money Appropriate funding for stage of DE system lifecycle ## **Understanding Risk** #### **Objectives Risk – Impacts Control** Managed by the degree of control exercised through a governance structure #### **Design Risk – Impacts Capital Cost and System Performance** - Inappropriate selection of technologies, equipment size - Incorrect design parameters operating temperatures and pressures #### **Construction Risk – Impacts Schedule & Budget** - Delays in construction schedules due to unexpected project phasing changes - Delays in equipment procurement - Encountering unforeseen subterranean obstructions #### **Demand Risk – Impacts Revenue Projections** - For new developments - > proposed buildings not built due to a downturn in the property market - > customers do not sign connection agreements. - For established systems - > customers fail to pay for or consume the projected amounts of energy. International Energy Agency Implementing Agreement on **District Heating and Cooling including Combined Heat and Power** ## **Understanding Risk** #### **Operational Risk – Impacts Performance & Uptime** - Lack of or poor commissioning - Insufficient system maintenance #### **Commercial Risk – Impacts Customers & Investors** Challenge of balancing customer payments with the cost of service and return on investment #### Capacity Risk – Impacts Project Delivery & System Performance Inadequate specific skills and competencies in-house #### Financial Risk – Impacts Investors Ability to deliver return on investment relative to the sources of capital available. ## **Business Models - Spectrum** #### FIGURE 4.2: OVERVIEW OF BUSINESS MODEL SPECTRUM ## **Public - Private Partner Roles with Risk Allocation** | | OPTION | DESCRIPTION | RISK ALLOCATION | MUNICIPAL/COUNCIL | | | | | |--------|--------|--|---|---|--|--|--|--| | Public | 1 | Entirely public sector led, funded, developed, operated and owned | Public sector retains all risk | Public sector procures contracts for equip-
ment purchase only. Procurement could be
direct, or via a publicly owned arm's-length
entity | | | | | | | 2 | Public sector led: entirely publicly
funded, greater use of private
sector contractors | Private sector assumes de-
sign & construction risk, and
possibly operational risk | Public sector procures turnkey asset delivery contract(s), possibly with maintenance and/or operation options | | | | | | | 3 | | | As 2, with increased private sector operational risk, and payment or investment at risk | | | | | | | 4 | Joint venture: public sector & private sector partners take equity stakes in a special purpose vehicle | Risks shared through joint participation in JV vehicle / regulated by shareholders' agreement | Joint venture: both parties investing and taking risk | | | | | | | 5 | Public funding to incentivize
private sector activity | Public sector support only to economically unviable elements | Public sector makes capital contribution and/
or offers heat/power off-take contracts | | | | | | | 6 | Private sector ownership with
public sector providing a guaran-
tee for parts of project | Public sector underpins key
project risks | Public sector guarantees demand or takes credit risk | | | | | | | 7 | Private sector ownership with public sector facilitating by granting land interests | Private sector takes all risk
beyond early development
stages | Public sector makes site available and grants lease/license/wayleaves | | | | | | ate | 8 | Total private sector owned project | Private sector carries all risks | No or minimal public sector role (e.g., plan-
ning policy / stakeholder engagement | | | | | ### **Business Models: Public** #### **Internal Department** - DE system project is developed within a department of a governmental body - Governmental body acts as the local authority with full system ownership - Project is funded from the public balance sheet of the local authority #### **Social** - Municipality establishes DE system as a community-owned not-for-profit cooperative - Heat customers become cooperative members & own system - Vote for representatives who select board members who control the company #### **Special Purpose Vehicle (SPV)** - Wholly owned subsidiary independent from the local authority - Created with the purpose of owning, operating and maintaining a DE system - One or more public sector entities may own shares in the SPV - Established as a company limited by guarantee based on shares owned by the participating organisations. ## **Business Models: Hybrid** #### Concession - Public sector initiates & develops project, development and continues to own assets - Contracts with private operator as concessionaire for a specified term, with renewal option - Public partner typically guarantee long term heat loads #### **Joint Venture** - Company limited by guarantee with partners ownership shares based on equity invested - Public partner land & access to lower-cost debt capital - Private partner skills/expertise, shorter procurement process & access to external capital #### **Special Purpose Vehicle (SPV)** - Wholly owned subsidiary created for owning, operating and maintaining a DE system - Ownership is split between public & private entities. ### **Business Models: Private** - Private sector fully owns, operates and controls the DE project - Financing is through private debt and/or equity - Financing costs higher than those for public sector sources - Results in higher expectation on the rate of return on investments. ### Strengths & Weaknesses #### TABLE 4.1: STRENGTHS AND WEAKNESSES OF VARIOUS BUSINESS MODELS | | STRENGTHS | May have limited ability to raise public debt Lack of ring-fenced budget can create risk on internal department municipal budgets Need to develop internal skills and build capacity Must comply with longer public sector procurement process | | | | | | |------------------------|--|--|--|--|--|--|--| | INTERNAL
DEPARTMENT | Access to lower-cost public sector financing Generate revenue for municipality Deliver aggregate demand and provide public sector anchor loads and reduce demand risk Better control on flexible development and network growth Internal oversight and regulation Greater control on objectives such as carbon savings and affordable tariffs | | | | | | | | SOCIAL | Not-for-profit approach allows lower tariffs Better control on flexible development and network growth Greater control on objectives such as carbon savings and affordable tariffs | Cannot rely on credit rating of public organization Cannot exit to other owners – owned in perpetuity by members and cannot access equity funding. | | | | | | | SPV | Can secure lower-cost public finance via its public sector parent, particularly if the heat customers are public entities Parent outsources technical risk to SPV Separate SPV business plan and budget insulate parent organization Greater control over objectives such as carbon savings and affordable tariffs | Must provide financing Must carry commercial risk Must comply with longer public sector procurement process | | | | | | ## Strengths & Weaknesses | | STRENGTHS | WEAKNESSES | | | | | |------------------|--|---|--|--|--|--| | CONCESSION | Leverage third-party financing Technical and commercial risk transferred to concession operator Concessionaire provides necessary skills Shorter private sector procurement process Ability to align with the social and environmental objectives of the public sector | Reduced control for public partner Loss of flexibility – concessionaire may decline to accept heat from sources not under its control or connect customers where cost of connection exceeds higher hurdle rate Liabilities are consolidated into public sector accounts Customers see public partner guarantor of last resort in conflict situations Need to provide higher private sector rates of return may result in higher tariffs | | | | | | JOINT
VENTURE | Can draw on public and private sector financing to achieve a blended rate Medium degree of control allows flexible development Risk shared between partners Separate business plan Can choose private sector procurement route Risk shared between partners | Possible early exit by a partner may compromise strategic objectives and constrain flexibility Return on capital requirements will determine tariff rates Longer procurement process required by public partner | | | | | | SPV | Outsource technical risk to SPV Separate SPV business plan and budget insulate parent organization | Must provide financing Must carry commercial risk | | | | | ## Strengths & Weaknesses | THIRA | STRENGTHS | WEAKNESSES | |-------|--|--| | | Access to capital Ability to leverage expertise in technology and best practices Shorter project development time due to proven track record and project management skills | Higher rate of return expected Tariffs higher compared to public model Cannot access low-cost infrastructure funding available to public sector Customers are tied into a private company and tariffs | ## Business Models Summary | | Migration path | PUBLIC | | | HYBRID | | | PRIVATE | |-------------------------|---|------------------------|--------|-----|------------|------------------|-----|--------------------| | Case | | Internal
Department | Social | SPV | Concession | Joint
Venture | SPV | Private
Utility | | Aberdeen, UK: | Arm's-length not-for-profit | | • | | | | | | | Aarhus, Denmark: | Municipally owned & run | • | | 1 | | | | 1 | | Birmingham, UK: | Run as a concession | | Ť. | | 0 | | - | | | Norman, USA: | Initially owned and operated by the university. Currently owned by university with private concessionaire for operations and maintenance | | | | • | | | | | Paris, France: | City owned system with Engie as Concessionaire | | | | | | | | | Phoenix, USA: | Private DE Utility | | | | | | | • | | Rotterdam, Netherlands: | Joint venture | | | | | • | | Į. | | Sangam, South Korea: | KDHC is an SPV owned by public entities Korea Electric Power Company, Seoul Metropolitan City government, Korea Energy Management Corporation | | | | | | | | | Stockholm, Sweden: | Fortum Varme AB is a JV formed by Finnish
energy company Fortum, and the
City of Stockholm | | | | | • | | | | Toronto, Canada: | For major investments operated as SPV with two public shareholders; | | | | | | | | | | Now run as a private DE utility | | | | | | | • | | Vancouver, Canada: | Run as municipal utility subject to public
oversight board | • | | | | | | | | Wick, UK: | Started as public social; | | 0 | | | | k . | | | | Moved to public SPV; | | | | | | | | | | Currently private | | SS | 32 | 2 | 38 3 | R | | ## New initiatives in preparation #### Practical realisation of low temperature district heating systems Led by Halmstad University kristina.lygnerud@hh.se Kick-off meeting 9/10 April, Graz. Hybrid Networks – District heating and cooling networks in an integrated energy system. Led by AIT Ralf-Roman.Schmidt@ait.ac.at Development meeting tbc, probably 25/26 April. ## **Further information** For more about the IEA-DHC, contact: Robin Wiltshire (Chairand UK Representative) Robin.Wiltshire@bre.co.uk Andrej Jentsch, AGFW (Operating Agent) IEA-DHC@agfw.de